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PERFORMANCE OPTIMIZATION OF MULTI-ROLLER FLAT BURNISHING 

PROCESS IN TERMS OF SURFACE PROPERTIES 

In the current investigation, two primary indicators, including the average roughness (AR) and Brinell hardness 

(BH) of the roller burnishing operation are enhanced using the optimal inputs (the spindle speed-S, feed rate-f, and 

depth of penetration-D). The performance measures are developed using the Kriging approach and optimal 

outcomes are generated by the Crow Search Algorithm (CSA). The optimal outcomes generated by the CSA  

of the S, f, and D were 832 rpm, 112 mm/min, and 0.12 mm, while the AR was reduced by 37.0% and the BH was 

increased by 29.9%, respectively. The optimal findings could be utilized in the practice for enhancing the burnished 

quality and to develop a professional system related to the roller burnishing operation. The Kriging-based AR and 

BH correlations could be used to present nonlinear experimental data. The optimizing technique could be utilized 

to deal with optimizing problems for different machining operations.  

1. INTRODUCTION  

The roller burnishing operation is extensively utilized to produce flat and internal 

surfaces with high quality, in which the pressure of the rollers is utilized to compress  

the material. The excessive pressure of the roller helps to reduce the irregularities, boost  

the hardness as well as the effective stress, and increase the production rate, as compared to 

the ball-burnishing one. This operation can be utilized for machining ferrous and non-ferrous 

materials in single and mass productions. Therefore, the roller burnishing operation is an effe-

ctive solution to fabricate machined components with high quality. 

A set of attempts has been conducted to improve the technical performances of different 

roller burnishing operations. The empirical models of the average roughness (AR) and 

Vickers hardness (VH) were proposed in terms of the burnishing force (BF), feed rate (f), 

width (W), and the number of passes (NP) [1]. The authors stated that the AR was decreased 
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by 95% and the VH was improved by 12% at the selected optimality. Patel and Brahmbhatt 

presented that the f was found to be the most effective parameter on the AR model of the 

burnished AA6061 [2]. John et al. emphasized that the S of 1100 rpm, f of 0.11 mm/rev, and 

penetration allowances of 0.03 mm could be applied to decrease the AR, ovality, and bore size 

of the internal burnished cast iron [3]. Yuan et al. emphasized that higher values of the S and 

D were applied to enhance the AR and VH responses [4]. Shankar et al. indicated that the 

coated roller could be applied to decrease the AR of the burnished composite in the dry 

condition [5]. Nguyen et al. stated that the AR of 0.071 µm and the Rockwell hardness  

of 52 HRC could be obtained using the optimal S, f, and D for the burnished carbon steel [6]. 

The AR, cylindricity (CL), and circularity (CC) were saved by 55.0%, 80.0%, and 2.0% at the 

optimal S, f, and D for the burnished hardened steel [7]. The ANFIS models of the energy 

efficiency and machining noise were developed regarding the S, f, D, and the number of rollers 

for internal burnished SCr440 steel [8]. The authors stated that the energy efficiency and 

machining noise were saved by 7.0% and 2.2% at the optimality. The enhancements in  

the maximum profile peak height of the roughness (MAR) and the VH of the burnished carbon 

steel were 17.0% and 14.0%, respectively, using the optimal operating parameters of the 

minimum quantity lubrication (MQL) system [9]. Duncheva et al. presented that the fatigue 

life of the 2024-T3 Al could be improved by more than 2000 times with the support of the 

single toroidal roller burnishing [10]. The total energy consumption (TE), mean roughness 

depth (MR), and CC models of the MQL-assisted burnishing operation were proposed in terms 

of the S, D, flow rate (F), and inlet pressure (P) [11]. The authors stated that TE, MR, and CC 

were decreased by 12.2%, 14.2%, and 42.5%, respectively at the optimality. The predictive 

models of the AR, VH, and CC were developed in terms of the S, f, BF, and NP, respectively 

for the burnished magnesium. The authors stated that the optimal values of the S, f, BF, and 

NP were 171 rpm, 0.18 mm/rev, 21 N, and 3 [12]. The MQL parameters, including the diame-

ter of the nozzle diameter, elevation angle, F, and P were optimized to decrease the CL and 

CC of the burnished hole [13]. The authors stated that the CYL and CIC were decreased by 

53.14% and 72.97%, respectively. However, the shortcomings of the aforementioned works 

can be expressed as: 

The predictive models of the AR and BH for the roller burnishing process have been not 

presented in published works.  

Additionally, the selection of optimal process parameters for minimizing AR and 

maximizing BH of the roller burnishing process has been not addressed in the previous works. 

To save experimental costs and human efforts, it is necessary to propose an effective 

technique, which can save human efforts and find the best outcomes. 

In this paper, we present optimization steps and experiment setting for the roller 

burnishing process of the hardened steel. Next, the obtained results are scientifically 

discussed. Finally, conclusions are drawn and future research is suggested.  

2. OPTIMIZATION APPROACH 

The optimization approach is presented in Fig. 1. 

Step 1: Generating experimental outcomes using the Box-Behnken method. 

https://link.springer.com/article/10.1007/s00170-020-06350-2#auth-G__V_-Duncheva
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The Box-Behnken method is an effective design of the experiment, in which each factor 

with three levels (–1, 0, +1) presents the lowest, middle, and highest ranges. The design points 

are assigned on the center and edge of the block. This approach decreases the number  

of experiments, leading to reduction in the costs and human efforts. The number of experi-

ments (NE) in the Box-Behnken method is calculated as: 

2 ( 1) pNE k k C= − +  

where k and Cp present the number of parameters and the number of center points, 

respectively. In this work, three process parameters having three levels and three center points 

are employed; hence, 17 experiments are generated.  

The AR is calculated as:  

1

n
Rai

iAR
n


==  

where Rai is the average roughness at the ith measured location. 

The BH is calculated as: 

1

n
BHi

iBH
n


==  

where BHi is the Brinell hardness at the ith measured location. 

Step 2: The Kriging-based AR and BH models are developed. 

The interpolative Kriging correlation is expressed as: 

( ) ( ) ( )Ty x f x Z x= +  

where x, βf(x)T, and Z(x) are HSPRT variables, regressive coefficients, and errors, 

respectively. The covariance-Z(x) in the design scope is computed as:  

2cov( ( ), ( ) ( , )a b Z a bZ x Z x R x x=  

where σ2
Z and R (xa, xb) are the dissimilarity and correlative functions, respectively. 

The σ2
Z is computed as: 

2 11
( ) ( )TY X R Y Xz

N
  −= − −

 

where X = [f(x1), f(x2), ..., f(xN)]T and Y denote the response vector of the samples. 

The R (xa, xb) is computed as: 

 

 

where d and θi are the dimension and undetermined parameter, respectively. 

The θi is computed as: 
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where R  is the determinant of the correlation matrix R. 

The β is computed as: 

 

The predictive correlation is expressed as: 

 

where the vector r(x*) T = [R (x*, x1) R (x*, x2)… R(x*, xN)]. 

The predictive error (ER) is calculated as: 

Ex Pd
ER

Ex

−
=  

where Ex and Pd are the experimental and predictive outcomes, respectively.  

Step 3: The CSA is utilized to find optimal outcomes 

The CSA is an efficient optimization approach, which is inspired by the behaviour  

of crows to hide and find the food. The crow can follow another one to obtain a better food 

and it will try to change the place of its food. The working procedure of the CSA is depicted 

in Fig. 2: 

– Initializing the population size (p), iteration number (t), flight step size (fz), and 

awareness probability (ap). 

– The individual crows and memory matrix are produced in the design space.  

The position matrix presents the position of the ith crow, in which each crow xi = (Xi,1, Xi,2, …,Xi,d) 

presents a feasible problem. The memory matrix describes the best position of the ith crow, 

in which the position of each crow is given by a vector mi = (Mi,1, Mi,2, …,Mi,d).        

– Evaluation of the quality of each crow based on the fitness function. 

– Generation of a new location for each crow in the design space. The updated position 

of the ith crow can be expressed in two situations: 

If jth crow does not observe that the ith crow is following it. In this case, the updated 

position of the jth crow is expressed as:  

, 1 , 1 , , ,
( )

i t i t i t i t i t
x x r fz m xi

+ +
= + +  −  

If jth crow observes that the ith crow is following it. In this case, the updated position  

of the jth crow is expressed as: 

, 1 , 1 , , ,
( ),

i t i t i t i t i t
x x r fl m x r api j

+ +
= + +  −   

where ri is a random number with a uniform distribution between 0 and 1. 

– Evaluation of a new position of each individual. If an updated location is feasible,  

a crow has been observed a new position. 

 – Calculation of the fitness value of the new position of each crow. 

– The memory matrix of each crow is updated. 

Table 1 presents the burnishing factors and their ranges. The values of the spindle speed 

and feed rate are determined based on the specifications of the CNC machine. These values 

(9) 

(10) 

(11) 
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are confirmed by the recommendations of the manufacturer of the burnishing tool. The ranges 

of the depth of penetration are selected using the configuration of the burnishing tool.  

A set of trials was performed at the minimum and maximum values of the process inputs to 

ensure machinability.  

Table 1. Process inputs of the roller burnishing process  

Symbol Parameters Unit Ranges 

S Spindle speed  Rpm 400-800-1200 

f Feed rate mm/min 100-300-500 

D Depth of penetration mm 0.04-0.08-0.12 

 

 

 

Fig. 1. The optimizing approach  Fig. 2. The working principle of the CSA 
  

3. BURNISHING EXPERIMENTS 

A CNC milling device entitled SPINNER U-620 is utilized to perform the experimental 

trials (Fig. 3a). The specifications of the machine tool are presented in Table 2. The burnishing 

tool is tightly clamped on the spindle system, while the precision vise is applied to fix the 

workpiece. The burnishing tool having three changeable rollers is utilized and a new roller is 

used for each trial. Table 3 presents the specifications of the burnishing tool. The flood condi-

tion is employed to facilitate all experiments.  

The length, width, and height of each specimen are 72.0 mm, 22.0 mm, and 12.0 mm, 

respectively. The hardened steel entitled AISI 5150 is chosen because of extensive employ-

ment in the automotive sector. The chemical compositions of the AISI 5150 are presented in 

Table 4. The rough milling using a tool with a diameter of 60 mm and three inserts is utilized 

to produce the pre-burnished surface. The milling conditions, including the spindle speed of 

500 rpm, feed rate of 120 mm/min, and depth of cut of 0.5 mm are applied. The average 
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roughness and Brinell hardness of the milled surface are 2.46 µm and 275 HB. The burnished 

samples are shown in Fig. 3b. 

The Brinell hardness is observed with the support of an Ernst hardness tester (Fig. 3c), 

while a Mitutoyo SJ-301 is utilized to capture the roughness profile and value (Fig. 3d).  

The representative values of the AR and BH responses are presented in Fig. 4. 

 Table 2. The specifications of the machine tool 

Parameters Unit Ranges 

X, Y, and Z travels mm 620, 520, and 460 

Table surface area mm2 800 

Controller  FANUC 

Spindle speed rpm 60-9000 

Spindle taper  SK 40 

Maximum table load kg 500 

Maximum weight of tool kg 7.0 

ATC Position 30 

Total power requirement kVA 30 

Weight of the machine Ton 6.9 

Length x Weight x Heght m 2.6 x 2.35 x 2.75 

 

 

(a) Preparing samples on CNC milling centre (b) Samples after machining 

  

(c) Measuring surface hardness (d) Measuring surface roughness 

Fig. 3. Experimental setting for the roller burnishing process 
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Table 3. The specifications of the burnishing tool 

Parameters Unit Ranges 

Outside diameter mm 41.8 

Working diameter mm 22 

Inner diameter mm 20 

Length of shank  mm 60 

Total length mm 85 

Number of rollers Piece 3 

Maximum rotational speed  rpm 3500 

Maximum feed rate mm/rev. 0.8 

Maximum depth of penetration mm 0.16 

Minimum depth of penetration  mm 0.02 

Total power requirement kVA 30 

Weight of the machine Ton 6.9 

Length×Weight×Height m 2.6×2.35×2.75 

 
Table 4. Chemical compositions of AISI 5150 alloy steel 

Elements Mn Cr C Si S P Fe 

% 0.80 0.80 0.52 0.20 0.04 0.035 balance 

4. RESULTS AND DISCUSSIONS 

4.1. ANOVA ANALYSIS 

The experimental outcome and parametric values of Kriging models are shown in Tables 

5 and 6, respectively. The ANOVA is applied to investigate the significance of the model and 

effective parameters [14, 15]. 

 The ANOVA results of the AR are presented in Table 7. Significant factors are single 

factors (S, f, and D) and quadratic factors (S2 and f2) (Fig. 5a). The contributions of the S, f, 

and D are 4.74%, 21.98%, and 19.84%, respectively. The contributions of the S2 and f2 are 

38.79% and 12.93%, respectively. The values of the R2 value (0.9782), Adjusted R2 (0.9702), 

and Predicted R2 (0.9672) indicate that the AR model is adequate. 

The ANOVA results of the BH are presented in Table 8. Significant parameters are 

single factors (S, f, and D), interactive factors (SD and fD), and quadratic factors (S2, f2, and 

D2) (Fig. 5b). The contributions of the S, f, and D are 19.64%, 19.17%, and 20.89%, 

respectively. The contributions of the SD and fD are 6.76 and 3.24%, respectively.  

The contributions of the S2, f2, and D2 are 5.26%, 7.32%, and 14.64% respectively. The values 

of the R2 value (0.9814), the Adjusted R2 (0.9754), and the Predicted R2 (0.9646) indicate that 

the BH model is adequate. 

To evaluate the precision of Kriging models, experiments at random points are executed. 

The deviations between the actual and predictive values of the AR and BH lie from –4.00% 

to 5.26% and –0.71% to 0.53%, respectively (Table 9), presenting the acceptable accuracy  

of Kriging correlations.   
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(a) The Brinell hardness at the experimental No. 12 (b) The roughness profile at the experimental No. 12 
 

Fig. 4. Representative results of the roller burnishing operation 

Table 5. Experimental data for the roller burnishing process 

No. S (rpm) f (mm/min) D (mm) AR (µm) BH (HB) 

Experimental data for training of the Kriging models 

1 400 300 0.04 0.41 348 
2 1200 300 0.04 0.43 402 
3 800 300 0.08 0.26 379 
4 400 300 0.12 0.29 408 
5 1200 300 0.12 0.32 519 
6 800 300 0.08 0.24 376 
7 800 100 0.04 0.28 382 
8 800 500 0.04 0.41 315 
9 800 100 0.12 0.17 484 
10 800 300 0.08 0.25 377 
11 800 500 0.12 0.29 391 
12 400 100 0.08 0.32 365 
13 400 500 0.08 0.45 298 
14 800 300 0.08 0.26 378 
15 1200 100 0.08 0.35 461 
16 1200 500 0.08 0.48 367 
17 800 300 0.08 0.27 375 

Experimental data for testing accuracy of the Kriging models 

18 500 200 0.06 0.33 356 
19 700 400 0.07 0.35 337 
20 900 350 0.09 0.24 391 
21 1100 300 0.11 0.28 473 
22 900 250 0.05 0.31 378 
23 1000 250 0.09 0.27 425 
24 800 200 0.11 0.19 447 

 

Table 6. The values of Kriging model parameters 

Performance measures 
Correlative parameter θi 

Scalar factor β 
S f D 

AR 0.427254 0.246521 0.285591 0.085432 
SH 0.174918 0.320256 0.737769 0.338244 



M.-T. Le et al./Journal of Machine Engineering, 2023, Vol. 23, No. 2, 159–173 167 

 

 
 

(a) For AR model (b) For BH model 

Fig. 5. Parametric contributions for the AR and BH models 
 

Table 7. Computed ANOVA results for the AR model 

Source Sum of Squares Mean Square F Value p-value Contribution (%) 

Model 0.10838 0.01204 24.92864 < 0.0001  

S 0.51168 0.51168 1066.00777 < 0.0001 4.74 

f 2.37274 2.37274 4943.21746 < 0.0001 21.98 

D 2.14173 2.14173 4461.93969 < 0.0001 19.84 

Sf 0.00000 0.00000 0.00000 1.0000 0 

SD 0.09284 0.09284 193.41069 0.756 0.86 

fD 0.09284 0.09284 193.41069 0.756 0.86 

S2 4.18739 4.18739 8723.72181 < 0.0001 38.79 

f2 1.39580 1.39580 2907.90727 < 0.0001 12.93 

D2 0.00000 0.00000 0.00000 1.0000 0 

Residual 0.00242 0.00048    

Cor Total 0.11080     

R2 = 0.9782; Adjusted. R2 = 0.9702; Pred. R2 = 0.9672 

 

Table 8. Computed ANOVA results for the BH model 

Source Sum of Squares Mean Square F Value p-value Contribution (%) 

Model 47962.71909 5329.19101 29.31302 0.0001  

S 20192.37831 20192.37831 111.06745 < 0.0001 19.64 

f 19709.15949 19709.15949 108.40952 < 0.0001 19.17 

D 21477.53478 21477.53478 118.13640 < 0.0001 20.89 

Sf 3166.62552 3166.62552 17.41791 0.0038 3.08 

SD 6950.12614 6950.12614 38.22892 < 0.0001 6.76 

fD 3331.12555 3331.12555 18.32274 0.0036 3.24 

S2 5407.93839 5407.93839 29.74617 < 0.0001 5.26 

f2 7525.87624 7525.87624 41.39581 < 0.0001 7.32 

D2 15051.75247 15051.75247 82.79162 < 0.0001 14.64 

Residual 909.01424 181.80285    

Cor Total 48871.73333     

R2 = 0.9814; Adjusted. R2 = 0.9754; Pred. R2 = 0.9646 



168 M.-T. Le et al./Journal of Machine Engineering, 2023, Vol. 23, No. 2, 159–173 

 
Table 9. Testing results for developed Kriging models 

No. 
AR BH 

Experiment Kriging ER (%) Experiment Kriging ER (%) 

18 0.33 0.34 –3.03 356 358 –0.56 

19 0.35 0.34 2.86 337 339 –0.59 

20 0.24 0.25 –4.00 391 389 0.51 

21 0.28 0.29 –3.45 473 471 0.42 

22 0.31 0.32 –3.13 378 376 0.53 

23 0.27 0.28 –3.57 425 428 –0.71 

24 0.19 0.18 5.26 447 449 –0.45 

4.2. PARAMETRIC INFLUENCES 

As shown in Fig. 6a, it can be stated that the spindle speed has contradictory impacts on 

the surface roughness. When the speed changes from 400 to 800 rpm, the AR is decreased by 

31.4%. When the speed increases from 800 rpm to 1200 rpm, the AR is increased by 54.2%. 

A higher speed leads to reductions in the hardness and strength of the workpiece due to higher 

temperature. The material is softly compressed; hence, the roughness decreases. Excessive 

speed may increase the vibration, resulting in an unstable burnishing operation; hence, the 

roughness decreases.  

As shown in Fig. 6b, it can be stated that the surface roughness increases (relatively 

around 66.6%) with an increment in the feed rate (from 100 to 500 mm/min). At a low feed 

rate, the distance between burnishing paths decreases and the tool-tip flat abnormalities, 

leading to a reduction in the roughness. An increased feed rate causes larger feed marks 

between burnishing traces; hence the surface roughness increases. As a result, a low feed rate 

is a better selection for minimizing surface roughness due to the greater impact of the 

burnishing tool and regular metal flow.  

As shown in Fig. 6c, it can be stated that the surface roughness decreases (relatively 

around 38.7%) with an increment in the burnishing depth (from 0.04 to 0.12 mm). A higher 

depth increases the burnishing pressure and the material is hardly burnished. The peaks are 

flattened and the valleys are filled; hence, the roughness decreases. 

The interactive impacts of process inputs on the AR model are shown in Fig. 7. 

As shown in Fig. 8a, it can be stated that the BH increases (relatively around 24.6%) 

with an increased S (from 400 to 1200 rpm). A higher speed increases the machining 

frequency and the number of burnishing traces, leading to work hardening; hence, the BH 

decreases. 

As shown in Fig. 8b, it can be stated that an increased higher f (from 100 to 500 mm/min) 

decreases the SH (relatively around 20.1%). At a low feed rate, the number of burnishing 

traces increases and the material is extensively treated; hence, higher hardness is obtained.  

A higher feed rate decreases the processing time; hence, the BH decreases. 

As shown in Fig. 8c, it can be stated that an increased D (from 0.04 mm to 0.12 mm) 

leads to a lower SH (relatively around 24.6%). A low depth decreases the burnishing pressure, 
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leading to a low degree of plastic deformation; hence, the BH decreases. A higher depth 

increases the degree of plastic deformation; hence, higher BH is obtained. 

The interactive impacts of process inputs on the BH model are shown in Fig. 9. 
 

 

  

(a) AR and S (b) AR and f 

 

(c) AR and D 

Fig. 6. The impacts of process parameters on the AR model 
 

  

(a) AR versus S and f (a) AR versus D and f 

Fig. 7. The interactive impacts for the AR model 
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(a) BH and S (b) BH and f 

 

(c) BH and D 
Fig. 8. The impacts of process parameters on the BH model 

 

  

(a) AR versus S and f (a) AR versus D and f 

Fig. 9. The interactive impacts for the BH model 

4.3. OPTIMIZING OUTCOMES GENERATED BY THE KRIGING MODELS-CSA 

The optimizing issue is expressed as: 

Minimizing AR and maximizing BH; 

Constraints: 400 ≤ S ≤ 1200 rpm; 100 ≤ f ≤ 500 mm/min; 0.04 ≤ D ≤ 0.12 mm. 

The Pareto fronts produced by the CSA are shown in Fig. 8. It can be stated that a higher 

BH (a desired indicator) leads to a higher AR (a worsened indicator). As a result, the optimi-

zing values of the S, f, and D are 832 rpm, 112 mm/min, and 0.12 mm, respectively (Table 10). 

The AR is decreased by 37.0%, while the BH is increased by 29.9% at the optimal point.  
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Table 11 presents the comparison between the pre-machined and burnished surfaces.  

As a result, the AR is decreased by 94.1% and the BH is enhanced by 77.1%, as compared to 

the milled surface. It can be stated that the roller burnishing process significantly decreases  

the surface roughness and improves the surface hardness. The burnishing pressure helps to 

decrease the irregularities on the milled surface, while the valley is filled up. Moreover, this 

helps to produce plastic deformation, which increases the hardness of the surface layer.  

In other words, the surface properties of the burnished surface sharply enhance.   

Table 10. Optimizing outcomes 

Methods 
Optimization parameters Responses 

S (rpm) f (mm/min) D (mm) AR (μm) BH(HB)  
Initial values 800 300 0.08 0.27 375 

Optimal values 832 112 0.12 0.17 487 
Reductions (%)  –37.0 29.9 

 
Table 11. Comparison between the pre-machined and burnished surfaces  

Machining methods 
Burnishing responses 
AR (µm) BH (HB) 

Milling 2.86 275 

Burnishing 0.17 487 
Improvement (%) –94.1 77.1 

 

4.4. SCIENTIFIC AND INDUSTRIAL CONTRIBUTIONS 

The scientific and industrial contributions are expressed as: 

The proposed optimizing technique can be efficiently applied to find global results for not only 

other burnishing operations but also machining processes.  

The nonlinear experimental data can be presented using the Kriging approach. 

The optimal data of the burnishing inputs and responses can be obtained using the Pareto graphs 

produced by the CSA (Fig. 10). 

 

Fig. 10. The Pareto front produced by the CSA 
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The Kriging-based AR and BH models can be applied to forecast the burning responses in the 

practice. 

The performance measures can be significantly enhanced using optimal outcomes. 

5. CONCLUSIONS 

This study addressed the roller burnishing operation of the hardened steel and optimized the 

process inputs (the spindle speed, feed rate, and depth of penetration) to decrease the average 

roughness and Brinell hardness. The correlative models of the performance measures were proposed 

using the Kriging approach, while optima were found using the CSA. The obtained outcomes are 

expressed as:  

1. Higher speed and depth were applied to improve the Brinell hardness, while a low feed rate 

was recommended. Low speed and feed rate were utilized to obtain a smoother surface, while a high 

depth was recommended. 

2. The feed rate was to be found to be the most effective input for the roughness model, followed 

by the depth and speed. The depth was to be found to be the most effective input for the hardness 

model, followed by the speed and feed rate.  

3. The optimal findings of the speed, feed rate, and depth were 832 rpm, 112 mm/min, and 0.12 

mm, respectively. The enhancements in the AR and BH were 29.9% and 37.0%, respectively. 

4. This work addressed the surface properties under variation of process parameters. The 

machining costs and energy consumption will be addressed in future works. 
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